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Aerodynamic characterization in the ascent phase is one of the necessary steps to design-
ing a successful rocket. Computational fluid dynamics (CFD) simulations that employ the
structured overset grid philosophy are commonly used for aerodynamics analysis. While
the method is highly desirable due to its ability to provide viscous flow solutions for com-
plex geometries, the preliminary geometry processing work required to generate grids is
a major bottleneck to efficiently obtaining fluid simulation results. The present paper
proposes strategies to improve the grid generation process by eliminating the mundane
tasks that can be automated with limited knowledge of the geometry and little user input.
The automation is targeted for rocket bodies and the protuberances that are commonly
placed on rockets. However, the resulting tools may be applicable to other geometries. The
present paper’s focus is on a scripting framework to automate surface and volume mesh
generation from a native computer aided design (CAD) solid model geometry definition.
The resulting process is able to generate overset meshes with fewer lines of code and less
user input culminating in savings in time to process a clean solid model CAD geometry to
a CFD-ready mesh.

I. Introduction

Rocket design is a complex exercise requiring many types of expertise and detailed analyses of the
components of the rocket and their integration. One aspect of the required analysis is the aerodynamic

characterization of the ascent vehicle. This analysis provides the forces and moments on the body of the
vehicle, which in turn allows the engineer to make decisions such as the size of the rocket, fuel required,
stability, and control authority needed for various aspects of flight. Furthermore, the proper separation of
the first stage from the rocket and the separation of the abort vehicle from the rocket in case of a failure1–3

are also dependent on aerodynamic analysis and contribute to astronaut safety.
Because flight tests are prohibitively expensive, such aerodynamics analyses are traditionally performed

using wind tunnel measurements. In the last two decades, progress in the field of computational fluid
dynamics (CFD) has resulted in another avenue of analysis that can be used side by side with wind tunnel
tests. These computational simulations can be used to compare to wind tunnel results as well as to define
aspects of the flight regime that can not be easily examined in a test facility. Furthermore, the computational
simulations are cheaper than a wind tunnel test and do not have flow contamination due to wind tunnel
walls.

The computational simulation of a rocket in flight requires that the computational simulation package
be able to handle complex geometries as well as provide accurate solutions. For the purpose of illustration,
Figure 1 shows a generic single stage ascent vehicle. Only four sub-system components are attached to the
main body to demonstrate the typical geometric features of protuberances. A rocket intended for orbit
is expected to have multiple stages and many more sub-systems protruding from the main body. For the
purpose of the present discussion, we refer to the main rocket body as the axi-symmetric body and the
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sub-systems mounted on the main body as protuberances. A mesh that accurately represents the wetted
surface (combination of the axi-symmetric body and protuberances) and resolves the necessary flow features
(boundary layer, flow separation, shock, etc.) needs to be generated in order to obtain accurate values for
forces and moments acting on the vehicle.

Fuel Feedline

Systems Tunnel

Skirt
Nozzle

Antenna Cover

Stiffner rings

RCS

Figure 1. Example of an axi-symmetric rocket body with protuberances.

While CFD provides var-
ious strategies for achieving
this, one well tested and heav-
ily used technique is the struc-
tured overset mesh method.4

The philosophy behind the
structured overset mesh strat-
egy is that each component
of the geometry can be dis-
cretized using a body-fitted
structured quadrilateral mesh
whose point distribution in
each grid direction can be de-
fined by a simple index. The
flow simulation process using
the overset mesh method is de-
picted in Fig. 2. The starting
point of the process is a geom-
etry definition. Most often CAD software is employed to define and update modern aircraft and rocket
geometries. For each component of the geometry (axi-symmetric body and each protuberance), the edge
curves in the solid model CAD definition are extracted and a surface triangulation is generated5–7 as a start-
ing point for grid generation. The curve segments along with the underlying triangulation are then used to
generate overlapping surface grids which represent the wetted surface of the body. Algebraic or hyperbolic
surface mesh generation techniques available in the Chimera grid tools (CGT)6 package are employed to
accomplish this objective. Because overlapping meshes that represent each geometric component can be
treated separately, this method is well suited for modeling complex geometries. The associated body-fitted
volume grid generation task is performed using a hyperbolic marching method pioneered by Steger, et al.8,9

These component grids are required to overlap with each-other to provide enough grid support such that
two adjoining grids can communicate flow information with each other using interpolation of the flow vari-
ables. Utilities such as Pegsus,10 Xrays11 and Suggar12 are used to obtain mesh to mesh communication
information. The well-established Overflow solver13,14 is used to obtain a flow solution on the overset grids.
Post-processing the solution to extract forces and moments completes the process. This technology has been
extensively used for various aircraft, helicopter, and rocket simulations.15–17

CAD definition
cad2srf Surface

triangulation,
Edge curves

Overset grid system Flow solution Post-processing

Surface grid Volume grid Grid connectivity

CGT OVERFLOW

Near-body Off-body Xray

Figure 2. The overset CFD process.

As the geometric complexities increase, the meshes become larger in order to resolve the various geometric
details and flow features. As a result, the computational costs rise. However, the grid generation step
continues to be the pacing item because it involves the largest share of the user’s time. While each step of
the grid generation process presents various challenges, surface grid generation typically requires the most
effort. Assuming that a clean CAD solid model is supplied, most of the user’s time is spent in the processing of
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the CAD edge curves and CAD derived triangulation to generate overlapping surface meshes. The generation
of volume grids from each of the surface grids is a simpler task that requires less user effort. Many of the tasks
in the surface mesh generation process require an expert user to make decisions. Even some mundane tasks
of geometric feature identification require heavy user involvement. These tasks include reordering curves so
that they are contiguous, filling open gaps in a curve made of several segments, concatenating adjoining flat
curve segments, finding control curves which define geometric features that must be preserved, and finding
the set of curves that define the intersection between two components to name a few.

CGT Tools
Surface: 
TFI, 
Hyperbolic

Manipulation: 
Grided,
Triged,
Srap,
Progrd

Volume:  
Hyperbolic,
Box

OVERGRID
Graphical Environment

Script Library

Low-level macros

Automation macros

CAD:
Cad2srf

Figure 3. Available tools for overset grid generation.

The established method for perform-
ing these steps is depicted in Fig. 3. As
shown in the bottom box, sevaral tools
that deal with each aspect of the grid gen-
eration process are available in the CGT
software. To generate grids using these
tools, two avenues are available to the
user. The first option is to evaluate the
geometry visually in a graphical environ-
ment where the user must process each
curve segment by hand and generate sur-
face grids within the GUI. A popular GUI
that performs this function and is often
used for overset grid generation is OVER-
GRID.18 The second option has been to
use the GUI as an aid, but do most of the
work in a script. Such scripts are typically based on a collection of macros from the CGT script library.19,20

This library consists of low-level macros that perform basic tasks such as grid index swapping and reversing,
grid subset extraction, two-grid concatenation, single-grid point redistribution, etc. The scripting process has
the advantage that it documents the process and allows the user to specify parameters for various geometric
and mesh inputs and thus facilitates rapid re-generation of the entire mesh to satisfy changing requirements.
These methods typically require the user to spend significant time in the GUI and in script-writing. This
results in a large amount of user time spent in performing mundane tasks resulting in a grid generation
process that requires many lines of scripts to spell out each step. The scripts thus generated are large in size
making the scripting process slow and error-prone. The largest burden on the user is the need to answer the
tedious questions about each curve segment instead of being able to focus on the larger task of manipulating
the curves and generating surface meshes.

To remove the tedium from the procedure, all tasks in the curve manipulation process are targeted for
automation in this paper. In addition to proposing strategies to automate these mundane tasks, automation
of the more involved process of redistribution of points along a curve given minimal guidance from the
user is also addressed. Many tasks are achieved by establishing rules based on user experience, where as
other tasks have definite geometric methods to follow and do not require user input or experience-based
rules. The resulting knowledge is coded into an automation macro in the script library. A macro is written
for each higher level functionality and replaces many lines of script and substantial user-time. Often the
higher level macros are combined into a top level macro which performs an overall function such as building
an axi-symmetric surface as well as volume grid in one call. The process for each higher level macro is
discussed in this paper. The macros for axi-symmetric bodies are addressed first and then the processes for
protuberances are discussed. The generic rocket shown in Fig. 1 is used to illustrate various aspects of the
proposed automation techniques.

II. Approach

While it may not be possible to apply the scripting approach to automate surface grid generation for
arbitrary geometries, it is conceivable that semi-automated scripts can be constructed for specific classes of
geometries. This paper proposes to automate various tasks currently performed by an expert user to generate
overset surface meshes on rocket geometries. As discussed earlier, the processing of curve segments derived
from CAD edges is accomplished interactively in a GUI or in a script. For each task, one or more calls
to various low-level functions are made. Examples of such calls include isolating a set of curve segments,
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extraction of a part of the segment, reordering a set of segments, concatenating them to create a curve,
translation or rotation of a set of segments, and point redistribution along each segment. All necessary steps
are identified visually using a graphical interface and performed one low-level task at a time in a script that
calls the various functions available in CGT through an interface in a script library. Such scripts are tedious
to write and because they are repetitive, they are prone to errors. The goal of this paper is to propose
methods that would allow a user to perform the same set of tasks by calling a higher-level macro. Many
higher-level macros are introduced that combine the low-level tasks into tasks that the user thinks about
during the grid generation process. Examples of the new macroscopic tasks are identification of the curves
needed for grid generation, filling open gaps along a curve, concatenating flat segments, reordering curve
segments so that they form contiguous curves in front to back order, and redistributing points over the entire
multi-segment curve rather than over one segment at a time.

Surface grid

Axi-symmetric
e.g. Rocket body

Protuberances
e.g. Pods,
       Fuel lines,
       Tunnels

Figure 4. Surface grids on the components of a
rocket.

These operations are performed on the curve segments
defining the components of a rocket which are divided into
two categories (Fig. 4); axi-symmetric body, and protuber-
ances that are attached to the axi-symmetric body. The axi-
symmetric body makes up the bulk of the rocket and holds the
fuel and main rocket motors. The protuberances are various
sub-systems such as antenna covers, fuel feed lines, systems
tunnels, reaction and roll control systems (RCS), tumble and
stage separation motors and other gadgets meant for various
necessary functions. The surface grid generation procedure for
each of these two categories is described in detail in the follow-
ing two sections.

III. Axi-symmetric body surface grid generation

The overall process to obtain an axi-symmetric rocket stack surface mesh is shown in Fig. 5. First, the
curve segments that define the axi-symmetric body are extracted from the CAD definition using the cad2srf6

utility in CGT. The curves are automatically ordered from front to back by cad2srf, but the integrity of
the curve needs to be examined to add missing pieces if needed. The points along each segment are then
redistributed so that a CFD-ready discretization of the surface is obtained. The redistributed segments are
concatenated into a curve that will be spun 360◦ to obtain a surface of revolution. The resulting surface
grid has an axis point at the nose (and possibly at the nozzle center at the back of the stack). An existing
high-level macro in the script library is used to replace the axis points with a cap grid that overlaps with
the axi-symmetric grid. In cases where a wind tunnel geometry is being simulated, the sting must also be
added to the rear of the rocket.

Axi-symmetric

Curve preparation Revolution End-caps Sting

Verification Redistribution

Figure 5. Surface grid generation on an axi-symmetric body.

Given a set of curve seg-
ments in the y = 0, z ≥ 0 half-
plane, and assuming that the
axis of rotation for the body is
x, Fig. 6(a) shows curve seg-
ments for the axi-symmetric
body of the example in Fig. 1.
A collection of these segments
can define a part of the geome-
try (e.g. booster, upper stage,
capsule, wind tunnel sting).
For the present example, this
set of segments defines the en-
tire axi-symmetric part of the
rocket.

Automation of axi-symmetric
surface mesh generation consists of two steps. The first step is to prepare a contiguous curve from the seg-
ments that define the axi-symmetric body. Once a contiguous, ordered curve is obtained, points along each
segment must be redistributed so that a desirable surface point distribution results. This distribution of
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Nose
Stiffener Rings Skirt Nozzle

Missing Connectors

Missing Connector

(a) Result of extracting curves from CAD definition

Nose
Stiffener Rings Skirt Nozzle

Added Connectors

Added Connector

Flat Segments Concatenated

(b) Missing connectors have been added and neighboring flat segments have been concatenated

Figure 6. A collection of initial curve segments on an axi-symmetric plane.

points must assure that the underlying features of the geometry are preserved and there is enough grid
support to obtain a good flow solution.

III.A. Curve verification

The first step in the process of obtaining a contiguous curve is to see if all segments lie on a plane within a
tolerance. If they do, the segments are deemed fit for an axi-symmetric body and are first made to sit on
the plane identically. In the past, the user performed all low-level tasks such as bounding box calculation
and resetting each point to a plane. In the new paradigm, a script macro replaces the user and performs
these steps without user input or effort. The next step is to verify that the segments are ordered from front
to back and that they form a contiguous curve. In a rare case where the curves are out of order, a macro
procedure developed to reorder the curve segments is presented in section IV.B.2. Once an ordered set of
segments is obtained, the integrity of the curve is examined. Generally, breaks in the CAD definition curve
are found because some CAD packages do not interpret vertical faces of the geometry as a separate curve.
In the past, the user simply created a segment to fill these holes. A new macro procedure removes the user
from the process by automatically detecting and constructing the missing pieces. As seen in Fig. 6, if the
last point of a segment does not match the first point of the next segment, the two points are connected to
create an additional segment.

A further consideration is the topology of the resulting curve. Where the user used to assign spacing for
each segment and produce a point distribution ready for a CFD simulation, a script macro must accomplish
this task. To automate the process, topological concerns arise. Specifically, we attempt to avoid situations
where two flat curves meet in a flat intersection. This is necessary because we assume that any two segments
meet in a corner which results in tighter spacing at the supposed corner. If two flat segments obtained from
a CAD definition are next to each other, the artificial corner must be removed. A script macro identifies
two flat curves next to each other and concatenates them. The first criterion of concatenation is that each
segment be flat. To characterize flatness, the turning angle of each segment is computed by accumulating
the turning angle at each internal vertex of the segment. Figure 7 shows a depiction in which the turning
angle at the third vertex of the segment is calculated from vectors ~a and ~b as

θi = cos−1

(
~a ·~b
|~a||~b|

)
(1)

where ~a and ~b define the two pieces of the segment around the vertex in question and θi is the amount the
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curve turns at vertex i. The total turning angle of the segment is defined as

θ =
nv−1∑
i=2

θi (2)

where nv is the number of vertices on a segment.

X

X

X
X

X X
X

X X
a

b
→

→

Figure 7. Points on a curve segment

If the resulting turning an-
gle is less than a degree for
both segments, we look to see
if the segments satisfy the sec-
ond criterion. The second cri-
terion for flatness is that the
two segments meet in less than
one degree angle. This is sim-
ply a matter of testing the cor-
ner angle, θc. The corner an-
gle at an end node between two segments is computed as the angle between the last internal piece of the
previous segment and the first internal piece of the next segment. The concatenation of adjoining flat seg-
ments using the above criteria results in the final set of segments (See Fig. 6(b)). A CFD-ready point
distribution on these segments must be achieved before a body of revolution can be created. The algorithm
for the redistribution of points is addressed next.

III.B. Automatic distribution of points

To obtain an appropriate discretization on the contiguous curve, the established approach calls on the user
to redistribute points along each segment. Previously, the user has tediously made script calls one segment
at a time while deciding if the segment should have equi-spaced points or not. For equi-spaced segments, the
user must specify the spacing. For stretched point distributions, the end-spacings for that segment as well as
a stretching ratio must be specified. Truly complex geometries such as the space shuttle or the Ares rockets
can require over 100 curve segments for proper definition of the axi-symmetric body. Thus redistributing
points along each individual segment is a monumental task requiring much patience and many lines of script.
The goal of this section is to reduce the burden on the user by automatically redistributing the points along
all segments in a contiguous curve. To do this, the user must provide some guidance with spatial resolution
and flow solution accuracy in mind. These include spacing at the front and back of the curve, a global
maximum spacing (∆smax) and an angular resolution parameter for segments that turn (i.e. put a point
every α degrees along the curve).

Given the user-specified parameters, the script macro must determine if the point distribution on each
segment will be equi-spaced or stretched. Past experience shows that highly curved segments require equi-
spaced grid points to adequately represent the geometry and accurately capture the flow. Segments with
turning angle (see previous section) higher than a threshold (30◦ is used) are designated as equi-spaced
and the user-specified angular resolution parameter is used to obtain a point distribution. Flatter segments
are marked for variable spacing with a user-specified maximum stretching ratio. This information is now
combined with user-specified front and back spacing parameters to assign grid spacing to each segment
intersection vertex. The front and back spacings are assigned to the front and back vertices of the curve
respectively. If the front or back segments are equi-spaced, the spacing values are propagated to the neigh-
boring vertex. For stretched segments, two considerations govern the grid spacing at any vertex. The first
is the flatness or sharpness of the segment intersection. Corner angle, θc, is an accurate method of gauging
flatness and can be used in combination with a dot product with a reference surface normal to determine
if the angle is concave or convex. The best practices21 for spacing at a vertex dictate that the sharper
the corner, the smaller the spacing (differences between convex and concave corners are addressed later).
Inversely, the flatter the intersection, the larger the spacing. Specifically, when the corner angle is 90◦ or
higher the smallest spacing can be used. However, when the corner is flat, the spacing can be as high as
the global maximum spacing. The second consideration for determining grid spacing is the arc length of the
segment. Simply speaking, the smaller segments define the small aspects of the geometry and thus must
have small grid spacing. On the other hand, long segments can be discretized with larger spacing, especially
if they are also flat.
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The combination of these requirements is represented schematically in Fig. 8. In this figure, the domain
is shown to be the variation of the arc length, L, from shortest to longest segment (Lmin to Lmax). The
θc variation is considered to be between flat segment intersections (0 degrees) and extreme corners (180
degrees). The four corners of the domain represent the four extreme possibilities. When short segments
meet in sharp corners at the right side of the figure, the smallest allowable spacing must be used. When the
opposite is true (long segments with small corner angles), the maximum allowable spacing is applied. When
long segments meet at sharp corners, the resolution of the sharp corner is deemed more important, resulting
in small spacing. Finally, in the bottom corner of the domain where short segments meet in small corner
angles, the strategy is to take a fraction of the average of the smallest and largest grid spacings.

L=L_min
θ=0

L=L_min
θ=180

L=L_max
θ=180

L=L_max
θ=0

Δs=Δs_max

Δs=Δs_min

Δs=Δs_min

Δs=(Δs_max+∆s_min)/R

Figure 8. Boundary conditions (domain of arc length and corner angle).

To use these conditions, we must de-
fine the smallest and largest possible grid
spacing. While the largest grid spacing,
∆smax, is specified by the user as the
global maximum spacing, the smallest
spacing is based on the shortest segment.
Best practices dictate that the shortest
segment must be defined by a minimum
of 5 points. Thus, ∆smin is defined to be
one fourth of the arc length of the short-
est segment.

Furthermore, the variation of the grid
spacing with respect to the corner angle
and arc length must be modeled. The
goal is that when the corner angle is
small, the grid spacing is large, but as the corner angle gets larger, the spacing must drop rapidly, flat-
tening and reaching its asymptotic value of ∆smin. For this reason, an exponential function is used to
represent the variation of the spacing with respect to the corner angle. This idea can be mathematically
expressed in the following equation.

∆s = be−qθ
2
c + f (3)

where b, f , and q, are constants. Additionally, the variation of the grid spacing with respect to the segment
arc length is modeled as a simple polynomial because trial and error has shown that a linear function raises
the value of grid spacing too quickly.

∆s = a

(
L− Lmin

Lmax − Lmin

)p
+ g (4)

where a, g, and p are constants. Combining the two equations, and normalizing the left hand side, we get

∆̃s− ∆̃smin
∆̃smax − ∆̃smin

= a

(
L− Lmin

Lmax − Lmin

)p
+ be−qθ

2
c + c

(
L− Lmin

Lmax − Lmin

)p
e−qθ

2
c + d (5)

where d is a combination of f and g. To use this equation, we must determine the values of the free constants
(a, b, c, d, p, q). The boundary values shown in Fig. 8 are used to obtain the values of a, b, c, and d.

Applying the boundary condition at the θ = 0, L = Lmin corner of the domain, we get

∆smax + ∆smin −R∆smin
R(∆smax −∆smin)

= b+ d (6)

At the θ = 0, L = Lmax corner of the domain, we get

1 = a+ b+ c+ d (7)

At the θ = 180, L = Lmin corner of the domain, we get

0 = be−32400q + d (8)

and at the θ = 180, L = Lmax corner of the domain, we get

0 = a+ be−32400q + ce−32400q + d (9)
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Now assuming that the value of e−32400q is very small for any reasonable value of q, we obtain the result
that a = d = 0 and b+ c = 1. We also find that

b =
1
R
− R− 2

R

∆smin
∆smax −∆smin

(10)

Using this, we can obtain the values of b and c for various values of R. For examples,

R = 2 => b =
1
2
, c =

1
2

(11)

R = 4 => b =
1
4
− 1

2
∆smin

∆smax −∆smin
, c =

3
4
− 1

2
∆smin

∆smax −∆smin
(12)

By trial and error, a value of p = 1.4 is considered best suited for proper spacing. A graphical depiction
of the variation of grid spacing with respect to arc length is presented in Fig. 9. The value of q for the
effectiveness of the exponent in the corner angle formula is set to 0.03 based on user experience. The value
of R is input by the user and can be set to a higher value to obtain finer spacing for small segments with
flat intersections.

Lmin Lmax
L

i

∆s
min

∆s
Max

∆s
i

p=1.0 (linear)
p=1.4

Figure 9. Variation of grid spacing at a vertex with respect
to segment arc-length.

The final consideration for the assignment of grid
spacing is that concave and convex corners must
be treated differently. Based on hyperbolic mesh
generation experience, the sharp convex corner (e.g.
trailing edge) needs to have many more points for
resolution than a sharp concave corner. This is be-
cause the hyperbolic marching scheme generates a
volume mesh orthogonal to the surface and this re-
sults in the rays emanating from a convex corner
quickly spreading away from each other while the
rays from a concave corner tend to quickly come
together.9 Due to this, a larger value of ∆smin is
used for a concave corner. The determination of how
much larger the value must be is based on the arc
length of the segments in the vicinity of the corner.
This adjustment is small for a short segment, and
larger for a long segment with the smallest adjust-
ment fixed at 50% and the largest adjustment at 350%. The adjusted spacing value ∆̃smin with respect to
the arc length, L, is specified by the following equation.

∆̃smin = ∆smin

(
L− Lmin

Lmax − Lmin

) 1
4

+ 1.5 (13)

The application of the algorithm to the generic rocket body is illustrated in Fig. 10. The details of the
equi-spaced nose, rings, skirt, and nozzle are shown in insets. The figure shows that a smooth distribution
of points is achieved with clustering near corners. The stretching of the points along a segment so that the
middle of the segment has larger grid spacing can also be seen. The elliptical inset highlights the vertical
segment that makes up the base of the skirt. This inset shows that the points are clustered to the convex
corner (top) more than the concave corner (bottom), thus meeting all the criteria discussed in this section.

An added capability is a scale factor which allows the user to coarsen or refine the mesh globally. In
a case where the user requires a finer or coarser mesh, simply changing the scale factor allows the user to
control the overall grid spacing. There is a limit to how much a mesh can be coarsened due to the fact that
a minimum number of points is required to represent a segment.

Although the algorithm in this section is developed to discretize a set of segments making up a curve on
a constant plane, a set of segments that do not lie on a constant plane can be similarly treated. We will
take advantage of the versatility of the algorithm to treat footprint curves for protuberances in the following
section.

III.C. Axi-symmetric macro capabilities

The various automation techniques discussed in this section culminate in a macro procedure that eliminates
a majority of the user’s effort in generating a surface and volume grids on an axi-symmetric body. This
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Figure 10. The final segments of the axi-symmetric body with proper point-distribution.

(a) Axis at nose (b) Nose cap to remove the axis point

(c) Nozzle cap (d) Nozzle with sting

Figure 11. Various capabilities of the axi-symmetric macro.
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top-level macro performs all necessary steps starting with curve verification and ending with a set of volume
grids to represent the axi-symmetric body. It replaces many lines of hand-written script with a single call to
perform functions such as curve verification and point redistribution. To use the point redistribution macro,
the user must supply the initial curve segments, and five user-specified parameters for determining spacings.
The macro uses these inputs to generate the final curve. It is also capable of generating the revolved surface
mesh and the associated volume mesh for the axi-symmetric body. Furthermore, the user can require that
the macro automatically generate cap grids at either end to remove axis-points. Figure 11(a) shows an axis
point at the nose which is replaced by a cap in sub-figure (b). Another added capability is that a user can
specify vertical and horizontal sizes of a sting at either end and the macro will automatically generate a
cylindrical sting for a wind-tunnel comparison case. Figure 11(c) is an example of using this capability to
close off a nozzle and to replace the axis with a cap grid. Subfigure (d) shows the addition of a sting.

IV. Protuberances

Protuberance

NozzleCollar Cap

Collar Plume

Pod, Motor Tunnel,
Fuel line

Collar Cap

Figure 12. Grids on protuberances.

The axi-symmetric body of an actual
rocket can have many protuberances at-
tached to its surface. The average protu-
berance is a sub-system pod, a motor, a
systems tunnel, or a fuel line (see Fig.12).
In some cases, a nozzle is attached to
the protuberance and must be addressed
along with the possibility that a plume
grid must be generated for an active noz-
zle. The surfaces of a non-nozzle protu-
berance are represented by two grids as
shown on the RCS in Fig. 13. A col-
lar grid covers the area in the vicinity
of the intersection between the protuber-
ance and the axi-symmetric body and the
cap grid covers the top of the protuber-
ance.

RCS Cap Grid

RCS Collar Grid

Figure 13. An example of a protuberance.

To generate the collar and cap grids for a protu-
berance, the first step in the procedure is to see if the
protuberance is a symmetric body. If it is symmetric
about a constant plane, we can generate a mesh on
one symmetric half of the body and reflect that mesh
across the plane of symmetry to obtain the full-body
mesh. The next task is to identify the footprint of
the protuberance on the axi-symmetric body from
the collection of CAD-derived curve segments. The
segments that make up the footprint define the in-
tersection between the axi-symmetric body and the
protuberance. The footprint segments associated
with the half-body must be ordered from the front
of the protuberance to the back. The point redistri-
bution algorithm discussed in the previous section
is then used on the resulting segments to obtain a
CFD-ready discretization. These segments are con-
catenated into a single curve which is marched using
hyperbolic surface grid generation onto the surface
of the axi-symmetric body on the one side and onto the surface of the protuberance on the other side. The
concatenation of these two surface grids is the collar grid. The resulting mesh overlaps the axi-symmetric
grid to provide grid-to-grid communication, but does not cover the entire surface of the protuberance. To
address this, a cap grid is generated by defining a curve on top of the protuberance which is hyperbolically
marched onto the surface of the triangulation. The cap grid must march far enough to cover the open parts
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of the protuberance and to provide proper overlap with the collar grid.
One variation to this procedure is when the segments defining the surface of the protuberance result in

adjoining set of roughly rectangular patches. If a proper redistribution of points on each segment can be
achieved, transfinite interpolation (TFI) methods can be used to generate the mesh on each patch. The
patches can then be concatenated to obtain a partial collar grid. The collar grid can be completed by
extracting the top and bottom curves of the TFI-result and hyperbolically marching them further onto the
protuberance and the axi-symmetric body respectively. A further challenge is that the protuberance or
the axi-symmetric body may contain a sharp feature which must be preserved. To do this, control curves
that define the sharp feature must be identified and followed during the hyperbolic surface grid generation
procedure.

The numerous steps discussed above are hitherto performed by a user utilizing a combination of visual
examination and low-level scripting calls for each protuberance. The process is tedious and forces the user
to think about each low-level step such as identifying each curve segment to be used and adding that one
segment to a file in the proper order of the curve. This time-consuming and error-prone method is modified
by introducing higher-level script macros that perform the tasks such as reordering the curve segments rather
than the user having to repeatedly carry out the mundane sub-task of which segment is next in the order and
whether its vertex index needs to be reversed to obtain the proper direction. The new macros allow the user
to focus on the steps necessary to obtain the surface grid and replaces many lines of scripting code and much
time starring at curve segments in a graphical interface with a single line of script that calls the new macro
procedure. Many of the macroscopic tasks outlined above are automated entirely, while other tasks require
minimal user input. This automation by script macros results in much shorter scripts and substantial savings
in user time to generate surface grids. The surface grid is then supplied to a procedure which produces a
volume mesh. Once all volume meshes are generated, the user is ready to set up grid-to-grid communication
and compute a flow solution.

IV.A. Symmetry

To illustrate the procedure in further detail, the RCS pod on the generic rocket-body is used as an example.
The CAD-derived curve segments for the RCS pod are shown in Fig. 14(a). These curve segments combined
with an underlying triangulation (Fig. 14(b)) define the body of the protuberance.

Footprint curve segments

Legs

Segm
ent on axi-sym

m
etric  surface

(a) Curve segments (b) Triangulation

Figure 14. RCS curves and triangulation obtained from CAD.

Experience has shown that the majority of protuberances are symmetric about a plane. In such cases, a
half-body grid can be generated and reflected across the symmetry plane to obtain the full-body represen-
tation. To do this, it is often simpler to work with the protuberance such that it is centered on a natural
plane such as the y = 0 plane. If the angle to the y=0 plane is not known, the user rotates it to the y=0
plane visually in an interactive environment. The user rotates the body, computes the bounding box, and
adjusts the angle to obtain proper symmetry. This is a tedious and time consuming operation. To automate
this, a script macro call to compute the necessary rotation angle is put in place. The macro computes the
initial rotation angle as the angle between the y = 0 plane and the center of the protuberance bounding box
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(see Fig. 15). An iterative procedure now rotates the body by this angle, recomputes the bounding box and
the rotation angle until the bounding box of the protuberance is centered on the y = 0 plane.

Protuberance
y=0

Φ

y=0

Before After
Axisymmetric body

Figure 15. Rotation to y = 0 plane.

To work on just one side of the symmetry plane,
the curve segments shown in Fig. 14 must be sorted
such that only the curve segments on that side are
retained. It is possible that some curve segments
straddle the symmetry plane. In these cases, the
segment must be cut by the y = 0 plane. In the
past, the user visually identified the curve segments
on one side and added them to the half-body curve
file by writing a script command for each segment.
The user then proceeded to cut each segment that
straddles the symmetry plane with a script call and
added it to the half-body curve file with a second
script call. This wearisome and time consuming pro-
cedure is now replaced with a high-level script macro
call that automates this task. Internally, the macro computes the bounding box of each segment and sorts
the segments in the positive y, negative y, and straddling categories. The macro then proceeds to cut seg-
ments that straddle the symmetry plane and places newly formed segments in the positive and negative y
lists. Finally, the segments on one side are output into the half-body curve file. The result of this step is
shown in Fig. 16(a).

Segm
ent on axi-sym

m
etric  surface

(a) Half-body (b) Wetted surface

(c) Footprint (d) Reordered

Figure 16. Curve segments on one side of the y = 0 plane.

IV.B. Collar grids

The steps and variations in the process of generating a collar grid are depicted in Fig. 17. To generate a collar
grid that discretizes both the lower body of the protuberance and provides overlap onto the rocket body in
the vicinity (see Fig. 13), we must first separate the curves that define the intersection of the protuberance
with the rocket body. Once these footprint curve segments have been identified, they need to be ordered
so that they are numbered contiguously from one end to another. These reordered segments then need to
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have grid points distributed on them. Concatenating the redistributed segments results in an initial curve
for the collar grid. From this curve, one can generate a portion of the collar grid onto the axi-symmetric
body using hyperbolic surface grid generation techniques.22 The other part of the collar grid grows onto the
protuberance surface for which there are two possible avenues. The first is transfinite interpolation (TFI).
If the curves defining the protuberance are set up such that clear boundary curves can be identified for a
quadrilateral patch, TFI can be used to generate the surface mesh in that patch. If quadrilateral patches can
not be identified, we must use hyperbolic surface grid generation23 to march onto the triangulation of the
protuberance. Details of these topics are discussed in the following subsections. An additional consideration
is the definition of control curves to preserve sharp features of the geometry. This topic is addressed in
sub-section IV.C.

Collar

TFIFootprint

Grid on 
axi-symmetric
body

Grid on 
protuberance

Reorder Redistribute

Hyperbolic
Hyperbolic Both

Initial curves

Control curves

Identify
Extract

Figure 17. The steps to generate a collar grid.

IV.B.1. Protuberance footprint curve segment identification

The curve segments (shown in Fig. 16(a)) and triangulation obtained from the CAD file can now be used to
expose the wetted surface of the protuberance and to find the footprint curve. Currently, the user manually
deletes the triangles that are not on the wetted surface using the painter’s algorithm.24 Subsequently, the
user manually identifies the curves that do not lie on the wetted surface and removes them. Finally, the user
manually chooses the segments that make up the footprint curve. To avoid the monotony of working with one
segment at a time, a macro procedure is introduced. The new macro can project a curve onto a triangulation
or a collection of structured surface patches using a CGT utility called PROGRD. PROGRD projects all
curve segments to the reference surface and returns an average projection distance. If this distance is larger
than a user-specified tolerance, the curve is assumed to not be on the reference surface.

The macro is invoked twice. The first call projects the segments to the wetted surface of the protuberance
triangulation. The triangles on this reference surface and the curve segments that lie on the wetted surface
of the protuberance are coincident and thus should have a negligible projection distance. The segments on
the unwetted part of the protuberance can thus be identified automatically and deleted. Figure 16(b) shows
the remaining segments. The second call projects the curves using the same utility onto the axi-symmetric
surface. This can be done using either the axi-symmetric body triangulation or the axi-symmetric surface
mesh generated earlier. This will clearly identify the curve segments that lie on the axi-symmetric body.
The segments that lie on both the protuberance as well as the axi-symmetric body are the footprint curve
segments. This new process replaces many lines of code and much time in a graphical environment with a
single macro call. The resulting segments are shown in Fig. 16(c).

IV.B.2. Curve segment reordering procedure

As seen in Fig. 16(c), the footprint curve segments are in random order. They must be reordered from end
to end. Previously, this was done by the user visually using a graphical interface. The entire process can be
automated for any number of segments and curves. The automation macro achieves this by starting with
the first segment in the file. The front and rear points of the segment are now tested against the front and
back points of every other segment until a match is found. If no matches are found, that is one end of the
curve. If a match is found, the matching segment must be attached to the appropriate end of the reordered
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curve. The macro must also determine if the new segment needs to have its indices reversed before attaching
it to the reordered curve. When both ends fail to find a match, the reordering of that curve is complete. If
unused segments remain, a second curve must exist. Starting with the first remaining unused segment, the
procedure is repeated until all segments are used. Figure 16(d) shows the reordered curve.

IV.B.3. Point redistribution on ordered curve

The algorithm that was used for the redistribution of points in an axi-symmetric plane can easily be used to
redistribute points here. However, with two surfaces as reference (protuberance surface and axi-symmetric
body surface), and two marching directions (a hyperbolic grid must be marched onto the protuberance as
well as onto the axi-symmetric body), the definition of concave and convex is ambiguous. The adjustments
for angle are simply turned off to attain a neutral point distribution. Once an adequate point distribution
is obtained, the segments can be concatenated and a collar mesh can be generated by simply marching onto
the axi-symmetric body and protuberance surfaces using hyperbolic surface grid generation.

IV.B.4. Auto TFI

If segments in the definition curve set are found to form quadrilateral regions, it is possible to generate a
mesh using transfinite interpolation techniques (TFI). Thus, we must first determine if a matching set of
quadrilateral regions exist on the protuberance. Until now, the user visually examined the geometry to
decide if quadrilateral regions exist. An algorithm based on common end-point identification can automate
the process and remove the tedium of identifying the quadrilateral regions. Separating the segments that
define a quadrilateral region into a file and making a call to a low-level TFI routine, a list of neighbors
is created using end-point matching and a map of the patch network is created to identify quadrilateral
regions. The footprint curve with a proper point distribution is then obtained using the script macros
discussed previously. The segments that attach to the footprint are now found using the quadrilateral region
definitions. The points along each of these legs are then redistributed such that each leg has the same number
of points. An additional consideration is that there must be only one leg for every segment end. The points
on the side opposite the segments on the footprint are also redistributed to match the number of points on
the corresponding footprint segment. Surface grids on the quadrilateral patches are then generated using
TFI. The curve segments of the antenna cover are shown in Fig. 18(a) and the resulting surface grids are
shown in Fig. 18(b).

(a) Quadrilateral regions (b) TFI surface patches

Figure 18. Example quadrilateral regions in initial curve segments and resulting TFI patches.

The resulting patches must be concatenated to each other and the resulting surface mesh must be con-
catenated to the collar grid that was marched onto the surface of the rocket. The resulting surface mesh
may not cover the entire surface of the protuberance. For this reason, the mesh may need to be extended.
To extend the mesh, a curve closest to the empty region is extracted and using the last spacing in the TFI
mesh, the surface mesh is marched further onto the protuberance triangulation using hyperbolic surface grid
generation. The resulting mesh is again concatenated to the TFI grid to obtain the complete collar grid.

14 of 19

American Institute of Aeronautics and Astronautics Paper AIAA-2009-3993



IV.C. Preservation of sharp features

Often a protuberance geometry presents additional challenges. One such challenge is the existence of sharp
features (see Fig. 19). These features in turn are defined by curve segments. If the sharp feature is on
the protuberance, the curve segments are in the protuberance curve segments obtained earlier. If the sharp
features are on the axi-symmetric body, they must be extracted from the axi-symmetric surface mesh and
clipped at the footprint. Furthermore, these extracted segments must be connected to the footprint curve
at the appropriate point. These curve segments are referred to as control curves because the hyperbolic
marching procedure must follow these curves to preserve the sharpness of the geometry. If TFI patches can
be found instead, these patches are by definition separated by the control curves and no special treatment
is required.

Cap Grid Collar Grid Axi-symmetric Body Control Curves

Figure 19. Sharp features near a protuberance. Unclipped control curves on the axi-symmetric body extend inside the
protuberance.

Previously, segment extractions to define control curves for hyperbolic marching have been performed by
a user with many script calls that extract, cut and concatenate or combine segments. An automation strategy
for extracting these control curves would relieve the user of these tedious tasks and simplify the scripting
process. The procedure depends on whether the sharp feature is on the protuberance or on the axi-symmetric
body. On the protuberance, these curve segments are already available in the half-body, wetted surface file.
The automation challenge is to match sharp angles along the footprint curve to control curves and their
extensions. At each footprint segment end-vertex, the corner angle at the vertex is computed to locate the
sharp turns. If a sharp turn in the footprint curve is detected, it may or may not have a corresponding
control curve. A procedure that looks for segments that share an end point with the footprint segment
vertex is employed to locate the possible control curve segment. If a segment is found, the procedure is used
again to see if that segment can be extended by another segment. Each extension segment is concatenated
to the previous curve to form the final control curve.

While the point matching procedure is effective on the protuberance, it is not effective on the axi-
symmetric surface as the possible control curves on the axi-symmetric body may not share a point with the
footprint curve. For this reason, a point-line intersection procedure must be employed keeping in mind that
a footprint segment vertex must intersect a grid line on the axi-symmetric surface. If such an intersection is
found, the grid line is extracted and split at the intersection. The newly formed segment is attached to the
corresponding footprint vertex and becomes the control curve for the hyperbolic marching procedure that
generates a collar grid onto the axi-symmetric surface.

Though protuberance control curves found by the above procedure can be matched to the center curve,
similar logic can be employed to find the control curves for the cap grid if matches can not be found. Figure
19 shows an example of a collar grid that has been generated with control curves along the axi-symmetric
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surface.

IV.D. Nozzles and plumes

If a protuberance is a rocket motor such as a reaction control jet, it will have a nozzle attached to it. In cases
such as this, a separate nozzle mesh must be created. Though a grid on the external surface of the nozzle
can be generated using TFI (since it is usually defined by two topologically quadrilateral patches), the exit
plane must be handled separately. Since the exit plane is a flat surface, simply collapsing the points at the
rim of the nozzle exit to the center to create a grid with an axis point is the simplest method. However, best
practices dictate that we avoid grids with axis points. Thus, the collapsed grid is trimmed to remove the
axis point and a patch is generated to fill the gap(see Fig. 11(c)). A further consideration is that modeling
a plume requires the user to specify a dynamic boundary condition on a portion of the exit surface. To do
this, grid points must be aligned such that two concentric circles cover the space between nozzle inner and
outer lip. Thus, the exhaust boundary condition can be applied to the region inside the inner lip ring.

A macro call is provided to address these needs and generates a volume mesh appropriate for capturing
both the lip of the nozzle and the flow field of a plume. The macro takes the surface grid on the nozzle up to
the external lip as input, and closes the exit face by automatically determining the arbitrarily oriented exit
plane. It also replaces the axis point with a cap grid. If the nozzle is active, the script macro automatically
generates the exit plane with a lip thickness specified by the user. A surface grid with an axis that assures
that a grid line exists at the lip thickness is generated and two volume grids for the plume are also created.
The first plume grid is annular circumferentially, but extends radially outward from the external lip (Fig.
20(a,b)). This grid matches the nozzle exit at one end and fans out radially as the grid extends downstream.
The second grid is a fanned core-grid that occupies the center of the plume and serves to avoid the need for
a polar axis topology in the annular grid. The user can control the radial distance, downstream distance,
initial and final spacings and the fanning angle of the resulting plume grid. Plume grids generated with this
macro are shown in Figs. 20(b,c).

(a) Nozzle trimmed for the lip (b) Plume annular grid (c) Plume core grid

Figure 20. Nozzles and plumes.

IV.E. Protuberance cap grids

As shown in Fig. 13, a collar grid does not cover the entire surface of the protuberance. The steps laid
out in Fig. 21 are followed to obtain a discrete representation on top of the protuberance. First, a curve
along the middle plane of the protuberance must first be obtained. If this curve is not available in the
CAD-defined curve segments, a CGT utility that allows the triangulated surface to be intersected with a
plane must be used. Once the curve along the centerline is available, it can be redistributed using the collar
grid as reference. The spacing for the ends of this new curve and the global maximum spacing for this curve
can be obtained from the collar grid. This redistributed curve runs from one end of the protuberance to the
other, which provides far more overlap between the two meshes than necessary. For this reason, both ends
of the curve are trimmed retaining appropriate overlap. Hyperbolic surface grid generation is used at this
point to march the curve along the protuberance triangulation to obtain a cap grid. A high-level macro to
automatically create a cap grid is not yet available and remains the topic of future investigation.
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V. Concluding remarks

Cap

Initial curve Grid on 
protuberance

Hyperbolic BothIdentification Redistribute TFI

Figure 21. The steps to generate a cap grid.

A method to automate
many aspects of the mesh gen-
eration procedure on rocket
bodies is presented. A set
of tools to manipulate edge
curves resulting from a CAD
solid model geometry defini-
tion are developed to elim-
inate or reduce considerable
amount of repetitive work and
user input. A set of high-level
script macros allows the user
to automate the generation of an axi-symmetric surface mesh from a set of initial curve segments. Another
set of high-level macros allows the user to manipulate the curve segments defining protuberances attached to
the axi-symmetric body to generate collar grids. The use of these techniques allow the preliminary work for
overset grid generation to be done with minimal user input. This has resulted in a simpler mesh generation
procedure for obtaining overset meshes. The methods proposed in this paper allow the user to focus on
the higher-level steps of grid generation rather than devoting time on the mundane low-level tasks such as
manipulation of individual curve segments.

An example of an automation macro is shown in Appendix A. This simple example highlights the type
of savings that can be achieved. Note that the more complex macros can be much longer and provide a
much larger benefit. The savings associated with each automation macro can be characterized by lines of
code eliminated and user time saved in decision making. While the time saved by the user varies greatly
depending on the user’s expertise, the number of decisions that the user does not have to make due to the
automation macro can be computed with respect to variables such as the number of initial curve segments,
N . The number of lines eliminated can also be similarly presented. Using the process of point redistribution
along a curve as an example, approximately N lines of script were replaced with a single high-level macro
call. Where previously the user had to make approximately 4N decisions, the new macro requires the user
to make only 5 decisions resulting in a substantial savings in scripting as well as time spent in a GUI. The
approximate savings for other tasks are similar and are presented in Table 1.

Table 1. Savings achieved by use of high-level macros to automate the grid generation process. N is
the number of initial segments, R is the number of quadrilateral regions, C is the number of segments
in control curves.

High-level macro Number of lines saved Number of decisions saved
Curve verification 10 N − 3
Point redistribution N − 1 3N + 2
Top-level axi-symmetric grid macro 30 N + 6
Rotate to symmetry plane 30 1
Trim to half-body 2N − 1 2N
Footprint identification N − 1 N

Reorder N − 1 2N
Auto TFI 5R− 1 N + 8R+ 6
Sharp features extraction C − 1 N + C

Nozzle and plume 50 0

The macro procedures described in this paper have been successfully applied to the Ares-I rocket geom-
etry. With two stages, an escape vehicle and many protuberances, the Ares-I rocket is an excellent example
of the usefulness of such macros in generating meshes for complex configurations. The estimated savings
in time for the generation of this overset grid system was on the order of 20 − 25%. However, due to the
proprietary nature of the geometry, a generic rocket geometry has been used to illustrate the use of the
macros in this paper. The ideas presented here can also be extended to non-rocket geometries with some
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additional work which is a topic for future investigation.

Appendix

An example of a script before and after automation is presented. The simplest function is chosen to make
it easier for the reader to understand the process. Note that the more complex macros can be over a 100
lines of code with complex logic.

Prior to the automation macros, the process of verifying an axi-symmetric body definition curve and
adding a missing segment is shown below. Low-level script calls are made to achieve the goal. For example,
the call to SplitGrids takes the file cad.cur and splits the first 18 curve segments in it into separate files
called t.1 through t.18. Similarly, CombineGrids takes a list of filenames and combines the grids in all of
those files into one file, ExtractSubs extracts a subset of one of the grids in the input file, and ConcatGridsn
takes grids from multiple files and concatenates those grids together in the index direction specified by the
user. Note that the curve segments which need to be added are identified by the user in a GUI and coded
in as segments 3 4 9 in the loop call and in the CombineGrids statement below.

SplitGrids cad.cur t 1 18
foreach i { 3 4 9 } {

set ip [expr $i + 1]
BuildConnector t.$i t.$ip t.$i.a

}
CombineGrids [list t.1.t.2 t.3 t.3.a t.4 t.4.a t.5 t.6 t.7 t.8 t.9 t.9.a \

t.10 t.11 t.12 t.13 t.14 t.15 t.16 t.17 t.18] contiguous.curs

proc BuildConnector { c1 c2 c3 } {
set t BuildConnector
ExtractSubs $c1 $t.1 [list 1 -1 -1 1 -1 1 1]
ExtractSubs $c2 $t.2 [list 1 1 1 1 -1 1 1]
ConcatGridsn [list $t.1 $t.2] $c3 j 0
exec /bin/rm -f $t.1 $t.2

}

An automation macro provides the same functionality in the single call below .

AutoBuildConnectors cad.curs contiguous.curs $tol

The first two arguments in the call are the names of the files that contain the input CAD edge curves
and the output contiguous curve. The last argument is a tolerance to determine if two adjoining end-points
are coincident. The macro automatically determines if gaps exist by using end-point matching within the
given tolerance. This automated method of finding gaps removes the user from the decision making process
and thus reduces the amount of time the user needs to spend in a GUI environment. Finally, it reduces the
user’s burden of writing lines of script by replacing all low-level macro calls with one line of high-level macro
call. The combination of these result in time saved to obtain an overset mesh.
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